On the Randić Index of acyclic conjugated molecules

Mei Lu*
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
E-mail: mlu@math.tsinghua.edu.cn

Lian-zhu Zhang ${ }^{\dagger}$
Department of Computer Sciences, Zhangzhou Teachers College, Zhangzhou, Fujian 363000, China E-mail: lz_zhang@126.com

Feng Tian ${ }^{\dagger}$
Institute of Systems Science, Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100080, China
E-mail: ftian@staff.iss.ac.cn

Received 2 June 2003; revised 6 June 2005

The Randić index of an organic molecule whose molecular graph is G is the sum of the weights $(d(u) d(v))^{-1 / 2}$ of all edges $u v$ of G, where $d(u)$ and $d(v)$ are the degrees of the vertices u and v in G. We give a sharp lower bound on the Randić index of conjugated trees (trees with a perfect matching) in terms of the number of vertices. A sharp lower bound on the Randic index of trees with a given size of matching is also given.
KEY WORDS: Randić index, conjugated tree, given size of matching

1. Introduction

In studying branching properties of alkanes, several numbering schemes for the edges of the associated hydrogen-suppressed graph ware proposed based on the degrees of the end vertices of an edge [1]. To preserve certain rankings of certain molecules, some inequalities involving the weights of edges needed to be satisfied. Randic [7] stated that weighting all edges $u v$ of the associated graph G by $(d(u) d(v))^{-1 / 2}$ preserved these inequalities, where $d(u)$ and $d(v)$ are the degrees of u and v. The sum of weights over all edges of G, which is called the Randic index or molecular connectivity index or simply connectivity index of G

[^0]and denoted by $R(G)$, has been closely correlated with many chemical properties [2] and found to parallel the boiling point, Kovats constants, and a calculated surface area. In addition, the Randic index appears to predict the boiling points of alkanes closely, while only taking into account the bonding or adjacency degree among carbons (see [3]). More data and additional references on the index can be found in $[4,5]$.

A tree T is a graph in which any pair of vertices is linked by a unique path. Denote by S_{n} and P_{n} the star graph and the path graph with n vertices, respectively. In [6], Bollobás and Erdös gave the sharp lower bound of $R(G) \geqslant \sqrt{n-1}$ when G is a graph of order n without isolated vertices. Yu [7] gave the sharp upper bound of $R(T) \leqslant(n+2 \sqrt{2}-3) / 2$ when T is a tree of order n. In the present paper, we investigate the Randić index of a type graph, namely that of conjugated trees (trees with a perfect matching). Also a sharp lower bound on the Randić index of trees with a given size matching is given in Section 3.

For convenience, we first introduced some terminologies and notations for graphs. Let $G=(V, E)$ be a graph. For a vertex x of G, we denote the neighborhood and the degree of x by $N(x)$ and $d(x)$, respectively. We will use $G-x$ to denote the graph that arises from G by deleting the vertex $x \in V(G)$.

2. Some lemmas

Let G be a connected graph. Two edges of a graph G are said to be independent if they are not incident with a common vertex. An m-matching of G is a set of m mutually independent edges. In this paper, we say a tree T with an m-matching means that T has at least one m-matching, and T may or may not have a matching whose size is more than m. Let M be a matching of T. A vertex v of T is said to be M-saturated if v is incident with an edge in M; otherwise, v is M-unsaturated. A perfect matching M of T means that every vertex of T is M-saturated.

We begin with two important results from [8] about trees with an m-matching.
Lemma 2.1 [8]. Let T be a n-vertex tree ($n \geqslant 3$) with a perfect matching. Then T has at least two pendant vertices such that each are adjacent to vertices of degree 2 .

Lemma 2.2 [8]. Let T be an n-vertex tree with an m-matching where $n>2 m$. Then there is an m-matching M and a pendant vertex v such that M does not saturate v.

The following two lemmas are used to prove our main results in Section 3.
Lemma 2.3. (1) For $x \geqslant 3$, the function

$$
f(x)=\frac{1}{\sqrt{x}}+\frac{x-1}{\sqrt{2 x}}-\frac{1}{\sqrt{x-1}}-\frac{x-2}{\sqrt{2(x-1)}}
$$

is monotonicly decreasing in x.
(2) For $x \geqslant 2$, the function

$$
g(x)=\frac{1}{\sqrt{x}}+\frac{x-1}{\sqrt{2 x}}-\frac{x-1}{\sqrt{2(x-1)}}
$$

is monotonicly decreasing in x.
Proof. (1) We consider the derivative of $f(x)$.

$$
\begin{aligned}
\frac{d f(x)}{d x} & =-\frac{1}{2 x \sqrt{x}}+\frac{x+1}{2 x \sqrt{2 x}}+\frac{1}{2(x-1) \sqrt{x-1}}-\frac{x}{2(x-1) \sqrt{2(x-1)}} \\
& =\frac{(\sqrt{2}-1)(x \sqrt{x}-(x-1) \sqrt{x-1})}{2 x(x-1) \sqrt{2 x(x-1)}}-\frac{1}{2(\sqrt{x-1}+\sqrt{x}) \sqrt{2 x(x-1)}} \\
& =\frac{(\sqrt{2}-1) \sqrt{x(x-1)}-x(x+1-2 \sqrt{2})-(\sqrt{2}-1)}{2 x(x-1)(\sqrt{x}+\sqrt{x-1}) \sqrt{2 x(x-1)}} .
\end{aligned}
$$

Since $(\sqrt{2}-1) \sqrt{x(x-1)}-x(x+1-2 \sqrt{2})<0$ for $x \geqslant 3$, we have $\frac{d f(x)}{d x}<0$. Thus (1) holds.
(2) Since

$$
\begin{aligned}
\frac{d g(x)}{d x} & =-\frac{1}{2 x \sqrt{x}}+\frac{x+1}{2 x \sqrt{2 x}}-\frac{x-1}{2(x-1) \sqrt{2(x-1)}} \\
& =-\frac{\sqrt{2}-1}{2 x \sqrt{2 x}}+\left(\frac{1}{2 \sqrt{2 x}}-\frac{1}{2 \sqrt{2(x-1)}}\right)<0,
\end{aligned}
$$

(2) is obvious.

Lemma 2.4. Let x, y be positive integers with $1 \leqslant x \leqslant y-1$. Denote

$$
h(x, y)=\frac{x+1}{\sqrt{y}}+\frac{y-1-x}{\sqrt{2 y}}-\frac{x}{\sqrt{y-1}}-\frac{y-1-x}{\sqrt{2(y-1)}} .
$$

Then $h(x, y)$ is monotonicly decreasing in x and y, respectively.
Proof. We consider some partial derivatives. Since

$$
\begin{aligned}
\frac{\partial h(x, y)}{\partial x} & =\frac{1}{\sqrt{y}}-\frac{1}{\sqrt{2 y}}-\frac{1}{\sqrt{y-1}}+\frac{1}{\sqrt{2(y-1)}} \\
& =\frac{\sqrt{2}-1}{\sqrt{2 y}}-\frac{\sqrt{2}-1}{\sqrt{2(y-1)}}<0
\end{aligned}
$$

$h(x, y)$ is monotonicly decreasing in x. On the other hand,

$$
\begin{aligned}
\frac{\partial h(x, y)}{\partial y} & =-\frac{x+1}{2 y \sqrt{y}}+\frac{y+x+1}{2 y \sqrt{2 y}}+\frac{x}{2(y-1) \sqrt{y-1}}-\frac{y+x-1}{2(y-1) \sqrt{2(y-1)}} \\
& =\frac{(\sqrt{2}-1) x(y \sqrt{y}-(y-1) \sqrt{y-1})}{2(y-1) y \sqrt{2 y(y-1)}}-\frac{\sqrt{2}-1}{2 y \sqrt{2 y}}-\frac{\sqrt{y}-\sqrt{y-1}}{2 \sqrt{2 y(y-1)}}
\end{aligned}
$$

Since $x \leqslant y-1$, we have

$$
\begin{aligned}
\frac{\partial h(x, y)}{\partial y} & \leqslant \frac{(\sqrt{2}-1)(y \sqrt{y}-(y-1) \sqrt{y-1})}{2 y \sqrt{2 y(y-1)}}-\frac{(\sqrt{2}-1) \sqrt{y-1}}{2 y \sqrt{2 y(y-1)}}-\frac{\sqrt{y}-\sqrt{y-1}}{2 \sqrt{2 y(y-1)}} \\
& =\frac{(\sqrt{y}-\sqrt{y-1})(\sqrt{2}-2)}{2 \sqrt{2 y(y-1)}}<0
\end{aligned}
$$

Thus $h(x, y)$ is monotonicly decreasing in y.

3. Main results

Let n and m be positive integers and $n \geqslant 2 m$. We define a tree $T^{0}(n, m)$ with n vertices as follow: $T^{0}(n, m)$ is obtained from the star graph S_{n-m+1} by attaching a pendant edge to each of certain $m-1$ non-central vertices of S_{n-m+1}. Obviously, $T^{0}(n, m)$ is an n-vertex tree with an m-matching. Denote

$$
f(n, m)=\frac{n-2 m+1}{\sqrt{n-m}}+\frac{m-1}{\sqrt{2(n-m)}}+\frac{m-1}{\sqrt{2}} .
$$

We have the following initial result.
Theorem 3.1. Let T be an n-vertex $(n=2 m)$ tree with a perfect matching. Then

$$
R(T) \geqslant f(2 m, m)
$$

and equality holds if and only if $T \cong T^{0}(2 m, m)$.
Proof. By induction on m. If $m=1,2,3$, then the theorem holds clearly by the fact that there are at most two trees with $n=2 m$ vertices and a perfect matching for $m=1,2,3$.

Let T be any $2 m$-vertex tree with a perfect matching ($m \geqslant 4$). By Lemma 2.1, T has a pendant vertex x_{1} which is adjacent to a vertex x_{2} of degree 2 . Then $x_{1} x_{2} \in E(T)$ and there is a unique vertex $x_{3} \neq x_{1}$ such that $x_{2} x_{3} \in E(T)$. Let $T^{\prime}=T-x_{1}-x_{2}$. Then T^{\prime} is a tree with $2(m-1)$ vertices and with an $(m-1)$ matching. Denote $d\left(x_{3}\right)=d$ and $N\left(x_{3}\right) \backslash\left\{x_{2}\right\}=\left\{y_{1}, y_{2}, \ldots, y_{d-1}\right\}$, then $d \geqslant 2$. Let S be the sum of the weights of the edges incident with x_{3} except for the edge $x_{2} x_{3}$ in T, and let S^{\prime} be the sum of the weights of the edges incident with x_{3} in T^{\prime}.

Then $S=\sum_{i=1}^{d-1} \frac{1}{\sqrt{d d\left(y_{i}\right)}}$ and $S^{\prime}=S \sqrt{\frac{d}{d-1}}$. By the induction assumption, we have

$$
\begin{align*}
R(T)= & R\left(T^{\prime}\right)+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2 d}}+S-S^{\prime} \\
\geqslant & f(2(m-1), m-1)+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2 d}}+S\left(1-\sqrt{\frac{d}{d-1}}\right) \\
= & f(2 m, m)+\frac{1}{\sqrt{m-1}}-\frac{1}{\sqrt{m}}+\frac{m-2}{\sqrt{2(m-1)}} \\
& -\frac{m-1}{\sqrt{2 m}}+\frac{1}{\sqrt{2 d}}+\left(1-\sqrt{\frac{d}{d-1}}\right) \sum_{i=1}^{d-1} \frac{1}{\sqrt{d d\left(y_{i}\right)}} \tag{1}
\end{align*}
$$

Now we complete the proof by considering two cases.
Case 1. $d=2$.
Since $m \geqslant 4, d\left(y_{1}\right) \geqslant 2$. Thus by (1), we have

$$
\begin{aligned}
R(T) & \geqslant f(2 m, m)+\frac{1}{\sqrt{m-1}}-\frac{1}{\sqrt{m}}+\frac{m-2}{\sqrt{2(m-1)}}-\frac{m-1}{\sqrt{2 m}}+\frac{1}{2}+\frac{1}{2}(1-\sqrt{2}) \\
& =f(2 m, m)+\left(\frac{\sqrt{2}-1}{\sqrt{2(m-1)}}-\frac{\sqrt{2}-1}{\sqrt{2 m}}\right)+\left(\frac{\sqrt{m-1}}{\sqrt{2}}-\frac{\sqrt{m}}{\sqrt{2}}\right)+\frac{2-\sqrt{2}}{2} \\
& >f(2 m, m)+\left(\frac{\sqrt{4-1}}{\sqrt{2}}-\frac{\sqrt{4}}{\sqrt{2}}\right)+\frac{2-\sqrt{2}}{2} \\
& >f(2 m, m) .
\end{aligned}
$$

Case 2. $d \geqslant 3$.
Since T has a perfect matching, we have $d=d\left(x_{3}\right) \leqslant m$. If $d\left(y_{i}\right) \geqslant 2$ for $i=1,2, \ldots, d-1$, then by (1), we have

$$
\begin{aligned}
R(T) \geqslant & f(2 m, m)+\frac{1}{\sqrt{m-1}}-\frac{1}{\sqrt{m}}+\frac{m-2}{\sqrt{2(m-1)}} \\
& -\frac{m-1}{\sqrt{2 m}}+\frac{1}{\sqrt{2 d}}+\frac{d-1}{\sqrt{2 d}}\left(1-\sqrt{\frac{d}{d-1}}\right) \\
= & f(2 m, m)+\frac{1}{\sqrt{m-1}}-\frac{1}{\sqrt{m}}+\frac{m-2}{\sqrt{2(m-1)}}-\frac{m-1}{\sqrt{2 m}}+\frac{1}{\sqrt{2}}(\sqrt{d}-\sqrt{d-1}) \\
\geqslant & f(2 m, m)+\frac{1}{\sqrt{m-1}}-\frac{1}{\sqrt{m}}+\frac{m-2}{\sqrt{2(m-1)}}-\frac{m-1}{\sqrt{2 m}}+\frac{1}{\sqrt{2}}(\sqrt{m}-\sqrt{m-1}) \\
= & f(2 m, m)+\frac{\sqrt{2}-1}{\sqrt{2(m-1)}}-\frac{\sqrt{2}-1}{\sqrt{2 m}}>f(2 m, m) .
\end{aligned}
$$

Hence, we can assume that there exists some $i(1 \leqslant i \leqslant d-1)$, say $i=1$, such that $d\left(y_{1}\right)=1$. Since T has a perfect matching, we have $d\left(y_{i}\right) \geqslant 2$ for $i=2, \ldots, d-1$. Thus

$$
\begin{aligned}
R(T) \geqslant & f(2 m, m)+\frac{1}{\sqrt{m-1}}-\frac{1}{\sqrt{m}}+\frac{m-2}{\sqrt{2(m-1)}} \\
& -\frac{m-1}{\sqrt{2 m}}+\frac{1}{\sqrt{2 d}}+\left(1-\sqrt{\frac{d}{d-1}}\right)\left(\frac{1}{\sqrt{d}}+\frac{d-2}{\sqrt{2 d}}\right) \\
= & f(2 m, m)+\frac{1}{\sqrt{m-1}}-\frac{1}{\sqrt{m}}+\frac{m-2}{\sqrt{2(m-1)}}-\frac{m-1}{\sqrt{2 m}} \\
& +\frac{1}{\sqrt{d}}-\frac{1}{\sqrt{d-1}}+\frac{d-1}{\sqrt{2 d}}-\frac{d-2}{\sqrt{2(d-1)}} .
\end{aligned}
$$

By Lemma 2.3 (1) and $d \leqslant m$, we have

$$
\begin{aligned}
R(T) \geqslant & f(2 m, m)+\frac{1}{\sqrt{m-1}}-\frac{1}{\sqrt{m}}+\frac{m-2}{\sqrt{2(m-1)}} \\
& -\frac{m-1}{\sqrt{2 m}}+\frac{1}{\sqrt{m}}-\frac{1}{\sqrt{m-1}}+\frac{m-1}{\sqrt{2 m}}-\frac{m-2}{\sqrt{2(m-1)}} \\
= & f(2 m, m)
\end{aligned}
$$

The equality $R(T)=f(2 m, m)$ holds if and only if equality holds throughout the above inequalities, that is if and only if $T^{\prime} \cong T^{0}(2(m-1), m-1), d\left(y_{1}\right)=$ $1, d\left(y_{i}\right)=2$ for $i=2,3, \ldots, d-1$ and $d=m$. Thus $T \cong T^{0}(2 m, m)$.

Another result of the present paper is to give a sharp lower bound on the Randic index of the trees with an m-matching as follow.

Theorem 3.2. Let $T=(V, E)$ be an n-vertex tree with an m-matching, $n \geqslant 2 m$. Then

$$
R(T) \geqslant f(n, m)
$$

with equality if and only if $T \cong T^{0}(n, m)$.
Proof. We prove the theorem by induction on n. Suppose $n=2 m$. Then the theorem holds by Theorem 2.1. Now we suppose $n>2 m$. Let T be any tree with n vertices and with an m-matching. By Lemma 2.2, T has an m-matching M and a pendant vertex v such that M does not saturate v. Let $u v \in E(T)$ with $d(u)=$ d and $N(u) \backslash\{v\}=\left\{v_{1}, v_{2}, \ldots, v_{d-1}\right\}$. Obviously, $d \geqslant 2$. Denote $T^{\prime}=T-v$. Then T^{\prime} is a tree with $n-1$ vertices and with an m-matching. Let S be the sum of the weights of the edges incident with u except for the edge $u v$ in T and S^{\prime}
the sum of the weights of the edges incident with u in T^{\prime}. Then $S=\sum_{i=1}^{d-1} \frac{1}{\sqrt{d d\left(v_{i}\right)}}$ and $S^{\prime}=S \sqrt{\frac{d}{d-1}}$. By the induction assumption,

$$
\begin{align*}
R(T)= & R\left(T^{\prime}\right)+\frac{1}{\sqrt{d}}+\left(1-\sqrt{\frac{d}{d-1}}\right) S \\
\geqslant & f(n-1, m)+\frac{1}{\sqrt{d}}+\left(1-\sqrt{\frac{d}{d-1}}\right) S \\
= & f(n, m)+\frac{m-1}{\sqrt{2(n-m-1)}}-\frac{m-1}{\sqrt{2(n-m)}}+\frac{n-2 m}{\sqrt{n-m-1}} \\
& -\frac{n-2 m+1}{\sqrt{n-m}}+\frac{1}{\sqrt{d}}+\left(1-\sqrt{\frac{d}{d-1}}\right) S . \tag{2}
\end{align*}
$$

Case 1. $d\left(v_{i}\right) \geqslant 2$ for $i=1,2, \ldots, d-1$.
In the case, we have $S \leqslant(d-1) / \sqrt{2 d}$. Then by (2), we have

$$
\begin{aligned}
R(T) \geqslant & f(n, m)+\frac{m-1}{\sqrt{2(n-m-1)}}-\frac{m-1}{\sqrt{2(n-m)}}+\frac{n-2 m}{\sqrt{n-m-1}} \\
& -\frac{n-2 m+1}{\sqrt{n-m}}+\frac{1}{\sqrt{d}}+\left(1-\sqrt{\frac{d}{d-1}}\right) \frac{d-1}{\sqrt{2 d}} \\
= & f(n, m)+\frac{m-1}{\sqrt{2(n-m-1)}}-\frac{m-1}{\sqrt{2(n-m)}}+\frac{n-2 m}{\sqrt{n-m-1}} \\
& -\frac{n-2 m+1}{\sqrt{n-m}}+\frac{1}{\sqrt{d}}+\frac{d-1}{\sqrt{2 d}}-\frac{d-1}{\sqrt{2(d-1)}} .
\end{aligned}
$$

Since T has an m-matching, $d \leqslant n-m$. Thus, by Lemma 2.3(2), we have

$$
\begin{aligned}
R(T) & \geqslant f(n, m)+\frac{m-1}{\sqrt{2(n-m-1)}}-\frac{m-1}{\sqrt{2(n-m)}}+\frac{n-2 m}{\sqrt{n-m-1}} \\
& -\frac{n-2 m+1}{\sqrt{n-m}}+\frac{1}{\sqrt{n-m}}+\frac{n-m-1}{\sqrt{2(n-m)}}-\frac{n-m-1}{\sqrt{2(n-m-1)}} \\
= & f(n, m)+(n-2 m)\left(\frac{\sqrt{2}-1}{\sqrt{2(n-m-1)}}-\frac{\sqrt{2}-1}{\sqrt{2(n-m)}}\right) \\
> & f(n, m) .
\end{aligned}
$$

Case 2. There exists some $i(1 \leqslant i \leqslant d-1)$ such that $d\left(v_{i}\right)=1$.
Suppose, without loss of generality, that $d\left(v_{1}\right)=d\left(v_{2}\right)=\cdots=d\left(v_{k}\right)=1$ and $d\left(v_{i}\right) \geqslant 2$ for $k+1 \leqslant i \leqslant d-1$, where $k \geqslant 1$. Thus $S \leqslant k / \sqrt{d}+(d-1-k) / \sqrt{2 d}$.

Then by (2), we have

$$
\begin{aligned}
R(T) \geqslant & f(n, m)+\frac{m-1}{\sqrt{2(n-m-1)}}-\frac{m-1}{\sqrt{2(n-m)}}+\frac{n-2 m}{\sqrt{n-m-1}} \\
& -\frac{n-2 m+1}{\sqrt{n-m}}+\frac{1}{\sqrt{d}}+\left(1-\sqrt{\frac{d}{d-1}}\right)\left(\frac{k}{\sqrt{d}}+\frac{d-1-k}{\sqrt{2 d}}\right) \\
= & f(n, m)+\frac{m-1}{\sqrt{2(n-m-1)}}-\frac{m-1}{\sqrt{2(n-m)}}+\frac{n-2 m}{\sqrt{n-m-1}} \\
& -\frac{n-2 m+1}{\sqrt{n-m}}+\frac{k+1}{\sqrt{d}}+\frac{d-1-k}{\sqrt{2 d}}-\frac{k}{\sqrt{d-1}}-\frac{d-1-k}{\sqrt{2(d-1)}} .
\end{aligned}
$$

Since T has an m-matching, $k \leqslant n-2 m$ and $d \leqslant n-m$. Thus by Lemma 2.4, we have

$$
\begin{aligned}
R(T) \geqslant & f(n, m)+\frac{m-1}{\sqrt{2(n-m-1)}}-\frac{m-1}{\sqrt{2(n-m)}}+\frac{n-2 m}{\sqrt{n-m-1}} \\
& -\frac{n-2 m+1}{\sqrt{n-m}}+\frac{n-2 m+1}{\sqrt{n-m}}+\frac{m-1}{\sqrt{2(n-m)}}-\frac{n-2 m}{\sqrt{n-m-1}}-\frac{m-1}{\sqrt{2(n-m-1)}} \\
= & f(n, m) .
\end{aligned}
$$

The equality $R(T)=f(2 m, m)$ holds if and only if equality holds throughout the above inequalities, that is if and only if $T^{\prime} \cong T^{0}(n-1, m), d\left(v_{i}\right)=1$ for $1 \leqslant i \leqslant n-2 m, d\left(y_{i}\right)=2$ for $n-2 m+1 \leqslant i \leqslant d-1$ and $d=n-m$. Thus $T \cong T^{0}(n, m)$.

References

[1] M. Randić, J. Amer. Chem. Soc. 97 (1975), 6609.
[2] L.B. Kier and L.H. Hall, Molecular Connectivity in Chemistry and Drug Research (Academic Press, San Francisco, 1976).
[3] L.B. Kier and L.H. Hall, Molecular Connectivity in Structure-Activity Analysis (Wiley, 1986).
[4] I. Gutman, D. Vidović and A. Nedić, J. Serb. Chem. Soc., in press.
[5] I. Gutman and M. Leporić, J. Serb. Chem. Soc. 66 (2001) 605.
[6] B. Bollobás and P. Erdös, Ars Combin. 50 (1998) 225.
[7] P. Yu, J. Math. Study (Chinese) 31 (1998) 225.
[8] Y. Hou and J. Li, Linear Algebra Appl. 342 (2002), 203.

[^0]: *Corresponding author. Partially supported by NNSFC (No. 60172005);
 \dagger Partially supported by NNSFC (No. 10271105);

 + Partially supported by NNSFC (No. 10431020).

