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On the Randi¢ Index of acyclic conjugated molecules
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The Randi¢ index of an organic molecule whose molecular graph is G is the sum of
the weights (d(u)d(v))~'/? of all edges uv of G, where d(u) and d(v) are the degrees of
the vertices u and v in G. We give a sharp lower bound on the Randi¢ index of conju-
gated trees (trees with a perfect matching) in terms of the number of vertices. A sharp
lower bound on the Randi¢ index of trees with a given size of matching is also given.
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1. Introduction

In studying branching properties of alkanes, several numbering schemes for
the edges of the associated hydrogen-suppressed graph ware proposed based on
the degrees of the end vertices of an edge [1]. To preserve certain rankings of
certain molecules, some inequalities involving the weights of edges needed to be
satisfied. Randi¢ [7] stated that weighting all edges uv of the associated graph
G by (d(u)d(v))~'/? preserved these inequalities, where d(u) and d(v) are the
degrees of u and v. The sum of weights over all edges of G, which is called the
Randi¢ index or molecular connectivity index or simply connectivity index of G
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and denoted by R(G), has been closely correlated with many chemical proper-
ties [2] and found to parallel the boiling point, Kovats constants, and a calcu-
lated surface area. In addition, the Randi¢ index appears to predict the boiling
points of alkanes closely, while only taking into account the bonding or adja-
cency degree among carbons (see [3]). More data and additional references on
the index can be found in [4,5].

A tree T is a graph in which any pair of vertices is linked by a unique path.
Denote by S, and P, the star graph and the path graph with »n vertices, respec-
tively. In [6], Bollobas and Erdds gave the sharp lower bound of R(G) > +/n — 1
when G is a graph of order n without isolated vertices. Yu [7] gave the sharp
upper bound of R(T) < (n + 272 — 3)/2 when T is a tree of order n. In the
present paper, we investigate the Randi¢ index of a type graph, namely that of
conjugated trees (trees with a perfect matching). Also a sharp lower bound on
the Randi¢ index of trees with a given size matching is given in Section 3.

For convenience, we first introduced some terminologies and notations for
graphs. Let G = (V, E) be a graph. For a vertex x of G, we denote the neigh-
borhood and the degree of x by N(x) and d(x), respectively. We will use G — x
to denote the graph that arises from G by deleting the vertex x € V(G).

2. Some lemmas

Let G be a connected graph. Two edges of a graph G are said to be indepen-
dent if they are not incident with a common vertex. An m-matching of G is a set of
m mutually independent edges. In this paper, we say a tree T with an m-matching
means that 7 has at least one m-matching, and 7 may or may not have a matching
whose size is more than m. Let M be a matching of T. A vertex v of T is said to
be M-saturated if v is incident with an edge in M; otherwise, v is M-unsaturated. A
perfect matching M of T means that every vertex of T is M-saturated.

We begin with two important results from [8] about trees with an m-matching.

Lemma 2.1 [8]. Let T be a n-vertex tree (n > 3) with a perfect matching. Then T has
at least two pendant vertices such that each are adjacent to vertices of degree 2.

Lemma 2.2 [§]. Let T be an n-vertex tree with an m-matching where n > 2m.
Then there is an m-matching M and a pendant vertex v such that M does not
saturate v.

The following two lemmas are used to prove our main results in Section 3.

Lemma 2.3. (1) For x > 3, the function
1 x—1 1 x =2

f(X):ﬁ—i_ \/E_\/x—l_\/Z(x—l)
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is monotonicly decreasing in x.
(2) For x > 2, the function
) 1 . x—1 x—1
X)) = — —
SV N VT )

1s monotonicly decreasing in x.

Proof. (1) We consider the derivative of f(x).

df 1 oal 1 ~ x
dx  2xJx  2x/2x 20— DW/x —1  2(x — DJ2(x = 1)
_ (V2= DxJx—(x—Dyx=1) 1

2x(x — DV/2Zx(x = D) TN WY W rTea=ny)
L W2-DVar D —x(x+1-2v2) - (V2 - 1)
B 2x(x — (/X +Vx = D2x(x — 1) '

d
Since (v2 — 1)y/x(x — 1) —x(x + 1 — 2+/2) < 0 for x > 3, we have fx) < 0.
Thus (1) holds. X
(2) Since
dg(x) _ 1 Lot 1 x—1
dx — 2xJx  2x/2x  2(x — 1)/2(x — 1)
V21 N ( 1 ] ) .
= — —_ < 0,

2xv/2x  \2v2x  2/2(x -1

(2) is obvious. 0

Lemma 2.4. Let x, y be positive integers with 1 < x < y — 1. Denote
x+1 y—1—x X y—1—x
SV =T 26 -1)

Then h(x, y) is monotonicly decreasing in x and y, respectively.

h(x,y) =

+

Proof:  We consider some partial derivatives. Since

ah(x,y)_i_ 1 B 1 N 1
ox Y Y2y =1 J20-D
V2-1  V2-1

— < 0,
2y V20 —-1
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h(x,y) is monotonicly decreasing in x. On the other hand,
oh(x,y)  x+1  y+x+1 X y+x—1
0y 7 20/2y T DYy—1 20-Dy20-D
_W2-Dx(py -0 -DYy-D V2-1 -y-1
B 20y = Dyy2y(y =1 232y 2y2y( -1

Since x < y — 1, we have

oh(x.y) _ (V2-DOoyy-=0-DJYy-1 2-DJ/y-1 f—Vy-1
oy 2y/2y(6r= 1D V20 -1 2y -1
_ W =Vy-b2-2)
2/2y(6y =D '

Thus A(x, y) is monotonicly decreasing in y. m]

3. Main results

Let n and m be positive integers and n > 2m. We define a tree T°(n, m)
with n vertices as follow: T°(n, m) is obtained from the star graph S,_,41 by
attaching a pendant edge to each of certain m — 1 non-central vertices of S, _,,+1.
Obviously, T°(n, m) is an n-vertex tree with an m-matching. Denote

n—2m+1 m—1 m—1

Jiom Baem A

We have the following initial result.

fn,m) =

Theorem 3.1. Let T be an n-vertex (n = 2m) tree with a perfect matching. Then
R(T) = f(2m,m),

and equality holds if and only if T = T°Q2m, m).

Proof. By induction on m. If m = 1, 2, 3, then the theorem holds clearly by
the fact that there are at most two trees with n = 2m vertices and a perfect
matching for m =1, 2, 3.

Let T be any 2m-vertex tree with a perfect matching (m > 4). By Lemma
2.1, T has a pendant vertex x; which is adjacent to a vertex x, of degree 2. Then
x1x, € E(T) and there is a unique vertex x3 # xj such that xyx3 € E(T). Let
T'=T —x; —x. Then T’ is a tree with 2(m — 1) vertices and with an (m — 1)-
matching. Denote d(x3) =d and N(x3\{x2} = {y1, y2, ..., Ya_1}, then d > 2. Let
S be the sum of the weights of the edges incident with x3 except for the edge x,x3
in T, and let S’ be the sum of the weights of the edges incident with x3 in 7.



M. Lu et al. | Randi¢ index of acyclic conjugated molecules 681

Then § = Y} and §' = §,/-%. By the induction assumption, we have

W
1 1
R(T RTY+ —=+—=+S5-¢
= NG
1 1 d
>fCm-D,m-D+—+—+S5(1 -,/ ——
fQm—1),m )—i—ﬁ—l—m—l- ( d—l)
FQmm) + L, m-2
= m, m —
Jm — Jmo 2m —1)
d-1
Vo J‘ Vd-1) & Jadtn
Now we complete the proof by considering two cases.
Case 1. d = 2.
Since m > 4, d(y;) > 2. Thus by (1), we have
1 1 m—2 m—1
R(T 2 1 —
(T) > f@m.m) + e = =t s m+2+( V2)
2 V21 Jm=1 Jm\ 2-42
=12 —
ﬂm"”+(2w D «ﬁ%>+<~ﬁ ~@> 2
VE-T 4\ 2-V2
>f(2mm)+< NG ﬁ + 3
> f(2m, m).
Case 2. d > 3.

Since T has a perfect matching, we have d = d(x3) < m. If d(y;) > 2 for
i=1,2,...,d—1, then by (1), we have

1 1 m—2
«/m—l_\/n_i—i_«/iZ(m—l)

R(T) = f(2m,m) +

m—l 1 d—l L
T f Jad -1

— fQm.m)+ 1 m—2 m—l 1 (\/— d—l)
’ J— f L2 =10 om f
> fCm,m) + S ek WU NS
vm \/_ L2 -1 2m «/_
NG 1 V2—-1
= f(2m,m) + > f(2m, m).

V2m—1)  2m
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Hence, we can assume that there exists some i (1 < i < d—1),sayi = 1,
such that d(y;) = 1. Since T has a perfect matching, we have d(y;) > 2 for
i=2,...,d—1. Thus

1 m—2

I
R(T) > £Qm, -
()2 JCmm+ == ot e

_m_—]_{_#_i_ 1 — L <L+E)
V2m  V2d d=1)\Vd 2d

1 1 m—2 m—1
= fQm, _ _
fOmm) + —m= = et =~ A

1 1 d—1 d—2

AT Vi1 Dhd  Jrd=n

By Lemma 2.3 (1) and d < m, we have

1 1 m—2
R(T) > fQm, -
D= gemms = " T Am =1
2m m Sm—1 2m  V2m —1)

= f(2m,m).

The equality R(T) = f(2m, m) holds if and only if equality holds through-
out the above inequalities, that is if and only if 7/ = T°Q2(m —1),m—1), d(y) =
1,d(y)=2fori=23,...,d—1and d =m. Thus T = T°2m, m). O

Another result of the present paper is to give a sharp lower bound on the
Randi¢ index of the trees with an m-matching as follow.

Theorem 3.2. Let T = (V, E) be an n-vertex tree with an m-matching, n > 2m.
Then

R(T) = f(n,m),

with equality if and only if T = T%n, m).

Proof. We prove the theorem by induction on n. Suppose n = 2m. Then the
theorem holds by Theorem 2.1. Now we suppose n > 2m. Let T be any tree with
n vertices and with an m-matching. By Lemma 2.2, T has an m-matching M and
a pendant vertex v such that M does not saturate v. Let uv € E(T) with d(u) =
d and N(u) \ {v} = {vi,v2,...,v4_1}. Obviously, d > 2. Denote 7' = T — v.
Then T’ is a tree with n — 1 vertices and with an m-matching. Let S be the sum
of the weights of the edges incident with u except for the edge uv in T and §’
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the sum of the weights of the edges incident with u# in 7’. Then § = Zf__ll .

=1 dd@w)
and §' = S,/%. By the induction assumption,
R(T)=R(T) + 1 + 11 d S
N Jd d—1
1 d
2 - 17 — 1_ I—— S
f(n m) + Nz + ( . 1)
m—1 m—1 n—2m
= f(n,m) + — +
f . m) 2 —m—=1) L2n—m) Jn—m—1
n—2m+1 1 d
—_— + — 11—,/ ——]8S. 2
vn—m +ﬁ+< d—l) @
Casel.d(v;)) >2fori=1,2,...,d—1.
In the case, we have S < (d — 1)/+/2d. Then by (2), we have
R(T) > f( " m—1 m—1 n n—2m
> f(n,m —
2 —m—=1) L2n—m) Jn—m—1
n—2m+1 n 1 e d d—1
Jn—m Jd d—1) J2d
7 " m—1 m—1 . n—2m
= f(n,m —
2m—m—=1) L2m—-—m) n—m-—1
n—2m+1+ 1 +d—1 d—1
Ji—m  Jd  J2d J2d-1)
Since T has an m-matching, d < n — m. Thus, by Lemma 2.3(2), we have
R(T) > f( )+ m—1 m—1 n n—2m
> f(n,m —
2 —m—=1) 2m-m) Vn—m-—1
n—2m+1+ 1 +n—m—1 n—m-—1
Jn—m Jn—m  2n—-m) JS2m—m—1)
V21 V21
= f(n,m) + (n —2m) —
2 —m—=1) 20 —m)
> f(n,m).
Case 2. There exists some i (1 <i <d —1) such that d(v;) = 1.
Suppose, without loss of generality, that d(v)) = d(v2) = - = d(v) = 1

and d(v;) > 2 for k+1 <i <d—1, where k > 1. Thus S < k/~/d+(d—1—k)//2d.
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Then by (2), we have
m—1 m—1 n—2m

J2(n—m—1)_J2(n—m)+Jn—m—l
_n—2m+1+i+ - [ d <i+d—1—k)
Vn—m  Jd d—1)\Jd v2d

R(T) = f(n,m) +

£ " m—1 m—1 n n—2m
= f(n,m —
2 —m—=1) 2w—-m) Vn—m-—1
n=—2m+1 k+1 d-1-—k k d—1—-k

N RN V2d  Ji=1 J2d-1)

Since T has an m-matching, k < n — 2m and d < n — m. Thus by Lemma 2.4,
we have

R(T) > f(n.m) + m—1 B m—1 n n—2m
- Lha—m—1) Rm—-—m) Jn—m—1
_n—2m—|—1+n—2m+l+ m—1 B n—2m B m—1
Jn—m n—m V2n—m) Jn—-m—-1 2m—m—1)

= f(n,m).

The equality R(T) = f(2m,m) holds if and only if equality holds throughout
the above inequalities, that is if and only if 7/ = T°(n — 1, m), d(v;) = 1 for
1 <i<n-2mdy)=2forn—2m+1<i<d-1andd =n—m. Thus
T =T%n,m). o
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