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On the Randić Index of acyclic conjugated molecules
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The Randić index of an organic molecule whose molecular graph is G is the sum of
the weights (d(u)d(v))−1/2 of all edges uv of G, where d(u) and d(v) are the degrees of
the vertices u and v in G. We give a sharp lower bound on the Randić index of conju-
gated trees (trees with a perfect matching) in terms of the number of vertices. A sharp
lower bound on the Randić index of trees with a given size of matching is also given.
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1. Introduction

In studying branching properties of alkanes, several numbering schemes for
the edges of the associated hydrogen-suppressed graph ware proposed based on
the degrees of the end vertices of an edge [1]. To preserve certain rankings of
certain molecules, some inequalities involving the weights of edges needed to be
satisfied. Randić [7] stated that weighting all edges uv of the associated graph
G by (d(u)d(v))−1/2 preserved these inequalities, where d(u) and d(v) are the
degrees of u and v. The sum of weights over all edges of G, which is called the
Randić index or molecular connectivity index or simply connectivity index of G
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and denoted by R(G), has been closely correlated with many chemical proper-
ties [2] and found to parallel the boiling point, Kovats constants, and a calcu-
lated surface area. In addition, the Randić index appears to predict the boiling
points of alkanes closely, while only taking into account the bonding or adja-
cency degree among carbons (see [3]). More data and additional references on
the index can be found in [4,5].

A tree T is a graph in which any pair of vertices is linked by a unique path.
Denote by Sn and Pn the star graph and the path graph with n vertices, respec-
tively. In [6], Bollobás and Erdös gave the sharp lower bound of R(G) �

√
n − 1

when G is a graph of order n without isolated vertices. Yu [7] gave the sharp
upper bound of R(T ) � (n + 2

√
2 − 3)/2 when T is a tree of order n. In the

present paper, we investigate the Randić index of a type graph, namely that of
conjugated trees (trees with a perfect matching). Also a sharp lower bound on
the Randić index of trees with a given size matching is given in Section 3.

For convenience, we first introduced some terminologies and notations for
graphs. Let G = (V , E) be a graph. For a vertex x of G, we denote the neigh-
borhood and the degree of x by N(x) and d(x), respectively. We will use G − x

to denote the graph that arises from G by deleting the vertex x ∈ V (G).

2. Some lemmas

Let G be a connected graph. Two edges of a graph G are said to be indepen-
dent if they are not incident with a common vertex. An m-matching of G is a set of
m mutually independent edges. In this paper, we say a tree T with an m-matching
means that T has at least one m-matching, and T may or may not have a matching
whose size is more than m. Let M be a matching of T . A vertex v of T is said to
be M-saturated if v is incident with an edge in M; otherwise, v is M-unsaturated. A
perfect matching M of T means that every vertex of T is M-saturated.

We begin with two important results from [8] about trees with an m-matching.

Lemma 2.1 [8]. Let T be a n-vertex tree (n � 3) with a perfect matching. Then T has
at least two pendant vertices such that each are adjacent to vertices of degree 2.

Lemma 2.2 [8]. Let T be an n-vertex tree with an m-matching where n > 2m.
Then there is an m-matching M and a pendant vertex v such that M does not
saturate v.

The following two lemmas are used to prove our main results in Section 3.

Lemma 2.3. (1) For x � 3, the function

f (x) = 1√
x

+ x − 1√
2x

− 1√
x − 1

− x − 2√
2(x − 1)
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is monotonicly decreasing in x.
(2) For x � 2, the function

g(x) = 1√
x

+ x − 1√
2x

− x − 1√
2(x − 1)

is monotonicly decreasing in x.

Proof. (1) We consider the derivative of f (x).

df (x)

dx
= − 1

2x
√

x
+ x + 1

2x
√

2x
+ 1

2(x − 1)
√

x − 1
− x

2(x − 1)
√

2(x − 1)

= (
√

2 − 1)(x
√

x − (x − 1)
√

x − 1)

2x(x − 1)
√

2x(x − 1)
− 1

2(
√

x − 1 + √
x)

√
2x(x − 1)

= (
√

2 − 1)
√

x(x − 1) − x(x + 1 − 2
√

2) − (
√

2 − 1)

2x(x − 1)(
√

x + √
x − 1)

√
2x(x − 1)

.

Since (
√

2 − 1)
√

x(x − 1) − x(x + 1 − 2
√

2) < 0 for x � 3, we have
df (x)

dx
< 0.

Thus (1) holds.
(2) Since

dg(x)

dx
= − 1

2x
√

x
+ x + 1

2x
√

2x
− x − 1

2(x − 1)
√

2(x − 1)

= −
√

2 − 1

2x
√

2x
+
(

1

2
√

2x
− 1

2
√

2(x − 1)

)
< 0,

(2) is obvious.

Lemma 2.4. Let x, y be positive integers with 1 � x � y − 1. Denote

h(x, y) = x + 1√
y

+ y − 1 − x√
2y

− x√
y − 1

− y − 1 − x√
2(y − 1)

.

Then h(x, y) is monotonicly decreasing in x and y, respectively.

Proof. We consider some partial derivatives. Since

∂h(x, y)

∂x
= 1√

y
− 1√

2y
− 1√

y − 1
+ 1√

2(y − 1)

=
√

2 − 1√
2y

−
√

2 − 1√
2(y − 1)

< 0,



680 M. Lu et al. / Randić index of acyclic conjugated molecules

h(x, y) is monotonicly decreasing in x. On the other hand,

∂h(x, y)

∂y
= − x + 1

2y
√

y
+ y + x + 1

2y
√

2y
+ x

2(y − 1)
√

y − 1
− y + x − 1

2(y − 1)
√

2(y − 1)

= (
√

2 − 1)x(y
√

y − (y − 1)
√

y − 1)

2(y − 1)y
√

2y(y − 1)
−

√
2 − 1

2y
√

2y
−

√
y −√

y − 1

2
√

2y(y − 1)
.

Since x � y − 1, we have

∂h(x, y)

∂y
� (

√
2 − 1)(y

√
y − (y − 1)

√
y − 1)

2y
√

2y(y − 1)
− (

√
2 − 1)

√
y − 1

2y
√

2y(y − 1)
−

√
y −√

y − 1

2
√

2y(y − 1)

= (
√

y −√
y − 1)(

√
2 − 2)

2
√

2y(y − 1)
< 0.

Thus h(x, y) is monotonicly decreasing in y.

3. Main results

Let n and m be positive integers and n � 2m. We define a tree T 0(n, m)

with n vertices as follow: T 0(n, m) is obtained from the star graph Sn−m+1 by
attaching a pendant edge to each of certain m−1 non-central vertices of Sn−m+1.
Obviously, T 0(n, m) is an n-vertex tree with an m-matching. Denote

f (n, m) = n − 2m + 1√
n − m

+ m − 1√
2(n − m)

+ m − 1√
2

.

We have the following initial result.

Theorem 3.1. Let T be an n-vertex (n = 2m) tree with a perfect matching. Then

R(T ) � f (2m, m),

and equality holds if and only if T ∼= T 0(2m, m).

Proof. By induction on m. If m = 1, 2, 3, then the theorem holds clearly by
the fact that there are at most two trees with n = 2m vertices and a perfect
matching for m = 1, 2, 3.

Let T be any 2m-vertex tree with a perfect matching (m � 4). By Lemma
2.1, T has a pendant vertex x1 which is adjacent to a vertex x2 of degree 2. Then
x1x2 ∈ E(T ) and there is a unique vertex x3 �= x1 such that x2x3 ∈ E(T ). Let
T ′ = T − x1 − x2. Then T ′ is a tree with 2(m − 1) vertices and with an (m − 1)-
matching. Denote d(x3) = d and N(x3)\{x2} = {y1, y2, . . . , yd−1}, then d � 2. Let
S be the sum of the weights of the edges incident with x3 except for the edge x2x3

in T , and let S ′ be the sum of the weights of the edges incident with x3 in T ′.
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Then S = ∑d−1
i=1

1√
dd(yi )

and S ′ = S

√
d

d−1 . By the induction assumption, we have

R(T ) = R(T ′) + 1√
2

+ 1√
2d

+ S − S ′

� f (2(m − 1), m − 1) + 1√
2

+ 1√
2d

+ S

(
1 −

√
d

d − 1

)

= f (2m, m) + 1√
m − 1

− 1√
m

+ m − 2√
2(m − 1)

−m − 1√
2m

+ 1√
2d

+
(

1 −
√

d

d − 1

)
d−1∑
i=1

1√
dd(yi)

. (1)

Now we complete the proof by considering two cases.

Case 1. d = 2.

Since m � 4, d(y1) � 2. Thus by (1), we have

R(T ) � f (2m, m) + 1√
m − 1

− 1√
m

+ m − 2√
2(m − 1)

− m − 1√
2m

+ 1
2

+ 1
2
(1 −

√
2)

= f (2m, m) +
( √

2 − 1√
2(m − 1)

−
√

2 − 1√
2m

)
+
(√

m − 1√
2

−
√

m√
2

)
+ 2 − √

2
2

> f (2m, m) +
(√

4 − 1√
2

−
√

4√
2

)
+ 2 − √

2
2

> f (2m, m).

Case 2. d � 3.

Since T has a perfect matching, we have d = d(x3) � m. If d(yi) � 2 for
i = 1, 2, . . . , d − 1, then by (1), we have

R(T ) � f (2m, m) + 1√
m − 1

− 1√
m

+ m − 2√
2(m − 1)

−m − 1√
2m

+ 1√
2d

+ d − 1√
2d

(
1 −

√
d

d − 1

)

= f (2m, m) + 1√
m − 1

− 1√
m

+ m − 2√
2(m − 1)

− m − 1√
2m

+ 1√
2

(√
d − √

d − 1
)

� f (2m, m) + 1√
m − 1

− 1√
m

+ m − 2√
2(m − 1)

− m − 1√
2m

+ 1√
2

(√
m − √

m − 1
)

= f (2m, m) +
√

2 − 1√
2(m − 1)

−
√

2 − 1√
2m

> f (2m, m).
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Hence, we can assume that there exists some i (1 � i � d − 1), say i = 1,
such that d(y1) = 1. Since T has a perfect matching, we have d(yi) � 2 for
i = 2, . . . , d − 1. Thus

R(T ) � f (2m, m) + 1√
m − 1

− 1√
m

+ m − 2√
2(m − 1)

−m − 1√
2m

+ 1√
2d

+
(

1 −
√

d

d − 1

)(
1√
d

+ d − 2√
2d

)

= f (2m, m) + 1√
m − 1

− 1√
m

+ m − 2√
2(m − 1)

− m − 1√
2m

+ 1√
d

− 1√
d − 1

+ d − 1√
2d

− d − 2√
2(d − 1)

.

By Lemma 2.3 (1) and d � m, we have

R(T ) � f (2m, m) + 1√
m − 1

− 1√
m

+ m − 2√
2(m − 1)

−m − 1√
2m

+ 1√
m

− 1√
m − 1

+ m − 1√
2m

− m − 2√
2(m − 1)

= f (2m, m).

The equality R(T ) = f (2m, m) holds if and only if equality holds through-
out the above inequalities, that is if and only if T ′ ∼= T 0(2(m−1), m−1), d(y1) =
1, d(yi) = 2 for i = 2, 3, . . . , d − 1 and d = m. Thus T ∼= T 0(2m, m).

Another result of the present paper is to give a sharp lower bound on the
Randić index of the trees with an m-matching as follow.

Theorem 3.2. Let T = (V , E) be an n-vertex tree with an m-matching, n � 2m.
Then

R(T ) � f (n, m),

with equality if and only if T ∼= T 0(n, m).

Proof. We prove the theorem by induction on n. Suppose n = 2m. Then the
theorem holds by Theorem 2.1. Now we suppose n > 2m. Let T be any tree with
n vertices and with an m-matching. By Lemma 2.2, T has an m-matching M and
a pendant vertex v such that M does not saturate v. Let uv ∈ E(T ) with d(u) =
d and N(u) \ {v} = {v1, v2, . . . , vd−1}. Obviously, d � 2. Denote T ′ = T − v.
Then T ′ is a tree with n − 1 vertices and with an m-matching. Let S be the sum
of the weights of the edges incident with u except for the edge uv in T and S ′
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the sum of the weights of the edges incident with u in T ′. Then S = ∑d−1
i=1

1√
dd(vi )

and S ′ = S

√
d

d−1 . By the induction assumption,

R(T ) = R(T ′) + 1√
d

+
(

1 −
√

d

d − 1

)
S

� f (n − 1, m) + 1√
d

+
(

1 −
√

d

d − 1

)
S

= f (n, m) + m − 1√
2(n − m − 1)

− m − 1√
2(n − m)

+ n − 2m√
n − m − 1

−n − 2m + 1√
n − m

+ 1√
d

+
(

1 −
√

d

d − 1

)
S. (2)

Case 1. d(vi) � 2 for i = 1, 2, . . . , d − 1.

In the case, we have S � (d − 1)/
√

2d. Then by (2), we have

R(T ) � f (n, m) + m − 1√
2(n − m − 1)

− m − 1√
2(n − m)

+ n − 2m√
n − m − 1

−n − 2m + 1√
n − m

+ 1√
d

+
(

1 −
√

d

d − 1

)
d − 1√

2d

= f (n, m) + m − 1√
2(n − m − 1)

− m − 1√
2(n − m)

+ n − 2m√
n − m − 1

−n − 2m + 1√
n − m

+ 1√
d

+ d − 1√
2d

− d − 1√
2(d − 1)

.

Since T has an m-matching, d � n − m. Thus, by Lemma 2.3(2), we have

R(T ) � f (n, m) + m − 1√
2(n − m − 1)

− m − 1√
2(n − m)

+ n − 2m√
n − m − 1

−n − 2m + 1√
n − m

+ 1√
n − m

+ n − m − 1√
2(n − m)

− n − m − 1√
2(n − m − 1)

= f (n, m) + (n − 2m)

( √
2 − 1√

2(n − m − 1)
−

√
2 − 1√

2(n − m)

)

> f (n, m).

Case 2. There exists some i (1 � i � d − 1) such that d(vi) = 1.

Suppose, without loss of generality, that d(v1) = d(v2) = · · · = d(vk) = 1
and d(vi) � 2 for k+1 � i � d−1, where k � 1. Thus S � k/

√
d+(d−1−k)/

√
2d.
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Then by (2), we have

R(T ) � f (n, m) + m − 1√
2(n − m − 1)

− m − 1√
2(n − m)

+ n − 2m√
n − m − 1

−n − 2m + 1√
n − m

+ 1√
d

+
(

1 −
√

d

d − 1

)(
k√
d

+ d − 1 − k√
2d

)

= f (n, m) + m − 1√
2(n − m − 1)

− m − 1√
2(n − m)

+ n − 2m√
n − m − 1

−n − 2m + 1√
n − m

+ k + 1√
d

+ d − 1 − k√
2d

− k√
d − 1

− d − 1 − k√
2(d − 1)

.

Since T has an m-matching, k � n − 2m and d � n − m. Thus by Lemma 2.4,
we have

R(T ) � f (n, m) + m − 1√
2(n − m − 1)

− m − 1√
2(n − m)

+ n − 2m√
n − m − 1

−n − 2m + 1√
n − m

+ n − 2m + 1√
n − m

+ m − 1√
2(n − m)

− n − 2m√
n − m − 1

− m − 1√
2(n − m − 1)

= f (n, m).

The equality R(T ) = f (2m, m) holds if and only if equality holds throughout
the above inequalities, that is if and only if T ′ ∼= T 0(n − 1, m), d(vi) = 1 for
1 � i � n − 2m, d(yi) = 2 for n − 2m + 1 � i � d − 1 and d = n − m. Thus
T ∼= T 0(n, m).
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[5] I. Gutman and M. Leporić, J. Serb. Chem. Soc. 66 (2001) 605.
[6] B. Bollobás and P. Erdös, Ars Combin. 50 (1998) 225.
[7] P. Yu, J. Math. Study (Chinese) 31 (1998) 225.
[8] Y. Hou and J. Li, Linear Algebra Appl. 342 (2002), 203.


